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Cyclic hardening and stress relaxation experiments of SUS316HTP were performed under
creep-fatigue loading with tensile strain holding at 700◦C. Experiments revealed that un-
der strain holding, the slow stress-relaxation stage satisfying Norton’s law with slight cyclic
hardening followed a rapid stress-relaxation stage that was noticeably affected by cyclic
hardening. This suggests that in the slow stress-relaxation stage, inelastic deformation me-
chanisms different from that of viscoplasticity occurred. Experiments were simulated using
a cyclic viscoplastic-creep model in which the inelastic strain-rate was decomposed into
viscoplastic and creep components that were affected differently by cyclic hardening. The
simulation accurately reproduced the experiments.
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1. Introduction

Creep-fatigue tests with tensile and/or compressive strain holding at high temperatures have
been performed to investigate the effect of creep damage on the fatigue lives of materials. For
polycrystalline metals, creep damage under creep-fatigue loading is caused by grain boundary
cavitation that develops with the accumulation of creep strain under strain holding (e.g., Hales,
1980; Priest and Ellison, 1981; Nam, 2002), and has been macroscopically evaluated in terms of
the changes in stress and creep strain under strain holding (e.g., Inoue et al., 1989; Takahashi et
al., 2008; Yan et al., 2015). To numerically evaluate creep damage in structural components, it
is necessary to use a constitutive model that can accurately simulate the stress-strain behavior
under cyclic loading with strain holding.
The ductility exhaustion method proposed by Priest and Ellison (1981) and Hales (1983) is a

well-known method to evaluate creep damage under creep-fatigue loading (Ainsworth, 2006; Yan
et al., 2015). This method assumes that creep damage develops with the accumulation of creep
or inelastic strain under strain holding. Priest and Ellison (1981) proposed that creep damage
develops when the inelastic strain-rate under strain holding is smaller than the transition rate
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below which the diffusion creep and grain boundary sliding become important, whereas Hales
(1983) considered that the development of creep damage depends on the variations in inela-
stic strain in three periods under strain holding. Takahashi (1998) and Takahashi et al. (2008)
adopted the Priest and Ellison (1981) model and decomposed the inelastic strain-rate under
strain holding into viscoplastic and creep components occurring at high and low inelastic-strain
rates, respectively, and assumed that only the creep component contributes to the development
of creep damage. They thus accurately predicted the creep-fatigue lives of 316 stainless steel at
550◦C and 600◦C.

The decomposition of inelastic strain-rate is physically valid in the presence of dislocation
viscoplasticity at high inelastic strain-rates and diffusion creep at low inelastic strain-rates. In
the constitutive modeling of cyclic plasticity, however, the decomposition of inelastic strain into
viscoplastic and creep strains has been regarded as a conventional assumption. The work has
been focused on the development of unified constitutive models, in which both viscoplasticity and
creep are considered to be caused by dislocation movements (Miller, 1976; Krausz and Krausz,
1996; Chaboche, 2008). It is, therefore, worthwhile to investigate the stress relaxation behavior
in creep-fatigue tests to examine the appropriateness of the inelastic strain-rate decomposition.
This point of view was not taken by Nouailhas (1989) for using a unified model to simulate the
creep-fatigue tests of 316 stainless steel at 600◦C performed by Goodall et al. (1981).

In this study, the stress relaxation behavior under tensile strain holding was measured in
creep-fatigue tests of SUS316HTP at 700◦C to examine the decomposition of inelastic strain-
-rate. It was assumed that the increase in dislocation density, which occurs in grains and is
observed as cyclic hardening, affected viscoplasticity significantly more than diffusion creep and
grain boundary sliding. It was thus suggested that inelastic deformation mechanisms other than
viscoplasticity started to operate shortly after the onset of strain holding, and consequently that
the inelastic strain-rate consisted of viscoplastic and creep components under strain holding in
the creep-fatigue tests. The experiments were then simulated using a cyclic viscoplastic-creep
model in which cyclic hardening was assumed to have different effects on the viscoplastic and
creep strain-rates.

Throughout this paper, a superposed dot indicates differentiation with respect to time t, a
colon represents the inner product between tensors (e.g., σ : ε = σijεij and D : ε = Dijklεkl),
‖·‖ denotes the Euclidean norm of second rank tensors (e.g., ‖σ‖ = (σ : σ)1/2), and 〈·〉 indicates
the Macaulay brackets (i.e., 〈x〉 = x if x > 0 and 〈x〉 = 0 if x ¬ 0).

2. Experiments

2.1. Material tested and cyclic loading conditions

Uniaxial creep-fatigue tests with tensile strain holding were performed at 700◦C using
an electric-hydraulic servo-type material testing machine MTS810. The material tested was
SUS316HTP (a 316 stainless steel), which had the chemical composition and mechanical proper-
ties at room temperature given in Tables 1 and 2. Solid bar specimens with the shape illustrated
in Fig. 1 were used. The tests performed are listed in Table 3. Hereafter, ∆ε, ε̇, and th indicate
the strain range, strain-rate, and strain hold time, respectively, in the creep-fatigue tests.

Table 1. Chemical composition of SUS316HTP by mass percent

C Si Mn P S Ni Cr Mo

0.07 0.28 1.75 0.27 0.0 11.2 16.6 2.12
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Table 2. Mechanical properties at room temperature

0.2% proof stress Tensile strength Tensile rupture strain
[MPa] [MPa] [%]

267 553 68

Fig. 1. Shape of the experimental specimens; dimensions in mm

Table 3. Tests performed

Strain rate Strain range Tensile strain hold time
[1/s] [–] [min]

10−3 0.010 0, 10, 60

10−3 0.007 0, 10, 60

10−3 0.004 0

10−4 0.010 0

2.2. Effect of cyclic hardening on stress relaxation

The effect of cyclic hardening on the stress relaxation behavior under strain holding was
investigated using the experimental data obtained in the creep-fatigue tests with th = 60min.
Under stain holding, we have

ε̇ = ε̇e + ε̇in = 0 (2.1)

where ε̇e and ε̇in are the elastic and inelastic parts of ε̇, respectively. Assuming isothermal
Hooke’s law for ε̇e in Eq. (2.1) gives

ε̇in = −
σ̇

E
(2.2)

Here, σ and E indicate the uniaxial tensile stress and Young’s modulus, respectively. Using a
difference approximation for σ̇ in the above equation, ε̇in at time t is represented as

ε̇in(t) = −
σ(ti+1)− σ(ti)

(ti+1 − ti)E
(2.3)

where ti and ti+1 are times slightly before and after t, respectively.
Applying Eq. (2.3) to the experimental data at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.007

and 0.01 provided the relationships between log σ(t) and log ε̇in(t) under strain holding (Figs. 2a
and 2b). Stress increased with the increasing number of cycles N , especially in the stage just after
the onset of strain holding. This is the phenomenon known as cyclic hardening. The relationship
became linear to satisfy Norton’s law shortly after the onset of tensile strain holding. Hereafter,
the stage of stress relaxation satisfying Norton’s law is referred to as the Norton stage, and
is distinguished from the transient stage in which stress rapidly relaxes just after the onset of
strain holding. Figure 2 shows that the Norton stage had much less cyclic hardening than the
transient stage.
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Fig. 2. Relationship between ε̇in and σ under tensile strain holding in the creep-fatigue tests at
ε̇ = 10−3 s−1 with th = 60min at: (a) ∆ε = 0.01 and (b) ∆ε = 0.007

To discuss the effect of cyclic hardening on the stress relaxation in more detail, the tensile
peak stress σ+peak and a representative stress in the Norton stage, σ10E−7, are plotted against N
in Fig. 3. Here, σ10E−7 denotes the stress at which ε̇

in became equal to 10−7 s−1 under strain
holding. As seen in the figure, σ10E−7 increased slightly with N compared to σ+peak , which
increased noticeably from N = 1 to N ≈ 20. This confirms that the Norton stage had much less
cyclic hardening than the transient stage. It is physically valid to assume that cyclic hardening is
primarily caused by an increase in dislocation density, which occurs in grains and is responsible
for viscoplasticity. It is thus suggested that the Norton stage is rate-controlled by inelastic
deformation mechanisms such as diffusion creep and grain boundary sliding, which are different
from viscoplasticity. Therefore, to simulate the creep-fatigue tests performed in this study, the
inelastic strain-rate under strain holding should be decomposed into a viscoplastic component
responsible for the transient stage and a creep component responsible for the Norton stage.

Fig. 3. Variations in σ+peak and σ10E−7 with N and ∆ε in the creep-fatigue tests at ε̇ = 10
−3 s−1

with th = 60min

3. Constitutive model

Because the inelastic-strain rate under strain holding is decomposed into viscoplastic and cre-
ep components (Section 2.2), it is assumed that the strain-rate ε̇ is decomposed into an ela-
stic component ε̇e obeying Hooke’s law, a viscoplastic component ε̇p associated with combined
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isotropic-kinematic hardening, and a creep component ε̇c satisfying Norton’s law1

ε̇ = ε̇e + ε̇p + ε̇c σ = De : εe (3.1)

and

ε̇
p =
3

2
ε̇p0

[ yeq
(1 + θp)σp0

]m s− a
yeq

ε̇
c =
3

2
ε̇c0

[ σeq
(1 + θc)σc0

]n s
σeq

(3.2)

where σ is the stress, De is the isotropic elastic stiffness, ε̇p0, σ
p
0 , and m are viscoplastic parame-

ters, s is the deviatoric stress, a is the deviatoric back stress, ε̇c0, σ
c
0, and n are creep parameters,

θp and θc are variables representing the effects of cyclic hardening on ε̇p and ε̇c, respectively,
and yeq and σeq are defined as

yeq =

√
3

2
‖s− a‖ σeq =

√
3

2
‖s‖ (3.3)

It is further assumed that the back stress can be decomposed into M parts (Chaboche et al.,
1979; Chaboche, 2008)2, and that cyclic hardening equally affects the drag and back stresses
(Ohno et al., 1998, 2017a)3. In addition, it is assumed that the evolution of each part of the
back stress is represented by the Ohno-Wang model (Ohno and Wang, 1993). We thus use the
following equations for a

a = (1 + θp)ã ã =
M∑

i=1

h(i)b(i)

ḃ(i) =
2

3
ε̇
p − ζ(i)(ζ(i)b(i)eq )

k(i)
〈
ε̇
p :
b(i)

b
(i)
eq

〉
b(i)

(3.4)

where ã is the deviatoric back stress free of the effect of cyclic hardening, b(i) is the i-th non-
-dimensional back stress related to ã, h(i) is the i-th incipient kinematic hardening modulus,

ζ(i) and k(i) are parameters of the back stress evolution, and b
(i)
eq is defined as

b(i)eq =

√
3

2
‖b(i)‖ (3.5)

Austenitic stainless steels exhibit a marked dependence of cyclic hardening on the strain range
(e.g., Chaboche et al., 1979; Ohno, 1982; Kang et al., 2003). Hence, we assume the following
equation for θp in Eqs. (3.2)1 and (3.4)1

θp = φ(∆εp)κ (3.6)

where φ(∆εp) is the material function representing the dependence of cyclic hardening on the
viscoplastic strain range ∆εp, and κ is the cyclic hardening parameter, which evolves as

κ̇ = L(κ0 − κ)ṗ −Rκ
ω (3.7)

Here, L and κ0 are strain hardening parameters, R and ω are thermal recovery parameters, and
ṗ denotes the accumulating rate of viscoplastic strain

ṗ =

√
2

3
‖ε̇p‖ (3.8)

1Eqs. (3.1)-(3.3) based on the decomposition of the inelastic strain-rate into viscoplastic and creep
components were assumed for solders in the absence of cyclic hardening (Kobayashi et al., 2003).
2The multiple back stresses can be transformed to the multiple surfaces proposed by Mróz (1967), as

shown by Ohno and Wang (1991).
3Trampczynski (1988) experimentally showed the effect of cyclic hardening on the back stress using

the technique of successive unloading.
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Equation (3.7) does not represent the cyclic softening following cyclic hardening that was ob-
served in the creep-fatigue tests (Fig. 3). However, this limitation is allowed for the purpose of
simulating the cyclic hardening and stress relaxation behavior discussed in Section 2.2.

The creep strain-rate ε̇c may be affected by cyclic hardening because grain boundary sliding
can be accommodated with dislocation viscoplasticity as demonstrated by Crossman and Ashby
(1975). This effect is represented by θc in Eq. (3.2)2. We assume

θc = cθp (3.9)

where c is a parameter representing the effect of cyclic hardening on ε̇c.

The constitutive model described in this Section needs ∆εp to be evaluated during computa-
tion. We can use the resetting scheme of a viscoplastic strain surface to correctly evaluate ∆εp

(Ohno et al., 2017b). This plastic-strain-range (PSR) surface has the same expression as the
memory surface of Chaboche et al. (1979), and follows the same evolution rule as that of Ohno
(1982). In the resetting scheme, however, the PSR surface is reset to a point and re-evolves
every cycle under cyclic loading. The resetting thus provides a definite value for the evolution
parameter η of the PSR surface irrespective of the amount of cyclic hardening, pre-straining,
and ratcheting. In this study, η is set to 0.4, as verified by Ohno et al. (2017b).

4. Determination of material parameters

Table 4 gives the material parameters used in this study, which were determined using the follo-
wing procedure. In the table, E and ν denote Young’s modulus and Poisson’s ratio, respectively.

Table 4. Material parameters with stress in MPa, strain in mm/mm, and time in s

Elastic E = 1.44 · 105, ν = 0.30

Viscoplastic ε̇p0 = 10
−3, σp0 = 7.53 · 10

1, m = 20.0

Creep ε̇c0 = 10
−3, σc0 = 2.72 · 10

2, n = 10.9

Kinematic
hardening

h(1) = 1.63 · 105, h(2) = 3.81 · 104, h(3) = 9.27 · 103,

h(4) = 1.59 · 103, h(5) = 7.24 · 102

ζ(1) = 6.67 · 103, ζ(2) = 2.00 · 103, ζ(3) = 6.67 · 102,

ζ(4) = 2.50 · 102, ζ(5) = 1.25 · 102

k(i) = 3.0, (i = 1, 2, . . . , 5)

Cyclic κ0 = 0.726, L = 13.4, R = 0.411, ω = 13.6, c = 0.32
hardening λ = 4.00 · 102, ∆εp0 = 6.61 · 10

−3

PSR surface evolution η = 0.40

1. The initial tensile curve at ε̇ = 10−3 s−1 was fitted, as shown in Fig. 4. This fitting was
made using in-house developed Excel software assuming that cyclic hardening and creep
strain-rate were negligible under initial tensile loading. The initial tensile curve was on-line
fitted by numerically integrating the constitutive equations in the Excel software. Among
the parameters, ε̇p0 was selected to be ε̇

p
0 = 10

−3 s−1, and k(i), responsible for ratcheting,
was set to 3.0 (Ohno et al., 2016a). The viscoplasticity exponentm had almost no influence
on ε̇p at ε̇ = 10−3 s−1 because we selected ε̇p0 = 10

−3 s−1 in Eq. (3.2)1. Thus, σ
p
0 , M , h

(i),
and ζ(i) were determined.

2. Variations in σ+peak with N in the fatigue tests at ε̇ = 10
−3 s−1 with ∆ε = 0.01, 0.007

and 0.004 were used to determine L, κ0, and φ(∆ε
p). It is shown that the constitutive
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Fig. 4. Tensile stress-strain relationship at ε̇ = 10−3 s−1

model gives the following relationships to σ+peak in the absence of thermal recovery of
cyclic hardening (Appendix A)4

σ+peak − σ
ini
+peak

σsat+peak − σ
ini
+peak

= 1− exp(−Lp)
σsat+peak − σ

ini
+peak

σini+peak
= φ(∆εp)κ0 (4.1)

where σini+peak and σ
sat
+peak indicate the initial and saturated values of σ+peak . Equations (4.1)

were used to determine L, κ0, and φ(∆ε
p) (Figs. 5a and 5b). The following form of φ(∆εp)

was found appropriate in the present study

φ(∆εp) =
1− exp(−λ∆εp)

1− exp(−λ∆εp0)
(4.2)

where λ is a fitting parameter, and ∆εp0 is selected to be equal to the saturated viscoplastic
strain range in the fatigue test at ε̇ = 10−3 s−1 and ∆ε = 0.01.

Fig. 5. (a) Change in σ+peak with the accumulated viscoplastic strain p and (b) dependence of saturated
σ+peak on the viscoplastic strain range ∆ε

p in the fatigue tests at ε̇ = 10−3 s−1

3. The thermal recovery parameters R and ω in Eq. (3.7) were determined to represent the
effect of strain hold time th on σ+peak at N ≈ 20 in the creep-fatigue tests at ε̇ = 10

−3 s−1

with th = 10min and 60min at ∆ε = 0.01 (Appendix B).

4Goodall et al. (1981) first showed Eq. (4.1)1 for fitting the tensile peak stress data of 316 stainless
steel at 600◦C.
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4. The Norton-stage data under strain holding at N = 1 and 20 in the creep-fatigue test at
ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.01 were fitted, as shown by the solid and dashed
lines in Fig. 2a. The fitting at N = 1 was used to determine σc0 and n in Eq. (3.2)2 by
selecting ε̇c0 = 10

−3 s−1 with negligible cyclic hardening, θc ≃ 0, at N = 1. The fitting at
N = 20 was then used to estimate c in Eq. (3.9) to reproduce the small increase in σ10E−7
depicted in Fig. 3 (Appendix C)

c ≃
σN=2010E−7/σ

ini
10E−7 − 1

σN=20+peak/σ
ini
+peak − 1

(4.3)

where σN=2010E−7 and σ
N=20
+peak denote the values of σ10E−7 and σ+peak at N = 20, respectively.

5. The saturated hysteresis loops in the fatigue tests at ε̇ = 10−3 s−1 and 10−4 s−1 at
∆ε = 0.01 were fitted to determine the viscoplasticity exponent m (Fig. 6).

Fig. 6. Saturated stress-strain hysteresis loops in the fatigue tests at ε̇ = 10−3 s−1 and 10−4 s−1

at ∆ε = 0.01

5. Comparison of simulated and experimental results

The creep-fatigue tests were simulated using the constitutive model described in Section 3 with
the material parameters given in Table 4. The constitutive model was implemented in Abaqus
using a user subroutine UMAT by extending the UMAT program developed by Ohno et al.
(2016b, 2017b). From here on, t∗ denotes the time elapsed after the onset of strain holding,
and σrelax indicates the stress attained at the end of stress relaxation under strain holding. It
is restated that the cyclic softening following cyclic hardening is disregarded in the constitutive
model. This limitation is allowed in simulating the transient and Norton stages affected diffe-
rently by cyclic hardening. Accordingly, this Section compares the simulated and experimental
results with emphasis on the stress relaxation behavior under strain holding at cycles where
cyclic softening was not significant.

The tensile peak stress variations and stress relaxation curves observed in the creep-fatigue
tests at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.007 and 0.01 were simulated with good
accuracy, as shown in Figs. 7 and 8. The variations in σrelax with N in the two tests were also
simulated well, though σrelax was slightly inaccurate in the case of∆ε = 0.007 (Fig. 7). The stress
relaxation became more significant as cyclic hardening developed in both the experimental and
simulated results. Ignoring ε̇c in the constitutive model did not affect the transient stage under
strain holding, but resulted in considerably under-predicting the stress relaxation, as shown in
Figs. 9a and 9b in the case of ∆ε = 0.01 with th = 60min. Hence, accurate simulation of the
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stress relaxation shown in Figs. 7 and 8 was owing to the dominance of ε̇p and ε̇c in the transient
and Norton stages, respectively. Therefore, the addition of ε̇c to ε̇p and the Norton type of creep
equation expressed as Eq. (3.2)2 for ε̇

c enabled accurate simulation of the stress relaxation under
strain holding.

Fig. 7. Variations in σ+peak and σrelax with N and ∆ε under creep-fatigue loading at ε̇ = 10
−3 s−1 with

th = 60min

Fig. 8. Stress relaxation under creep-fatigue loading at ε̇ = 10−3 s−1 with th = 60min at: (a) ∆ε = 0.01
and (b) ∆ε = 0.007

Fig. 9. Effect of the creep strain-rate on (a) variations in σ+peak and σrelax with N and (b) stress
relaxation at N = 20 under creep-fatigue loading at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.01
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The effect of cyclic hardening on ε̇c was taken into account through θc in Eq. (3.2)2 in
the constitutive model, and θc was assumed to be proportional to θp, θc = cθp, in Eq. (3.9).
Figure 10 demonstrates the effect of c on the stress relaxation in the simulation of the creep-
-fatigue test at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.01. As shown in Fig. 10b, the stress
relaxation at N = 20 was slightly over-predicted if c = 0, whereas it was noticeably under-
-predicted if c = 1. If c = 0 cyclic hardening had no effect on ε̇c through θc, and if c = 1
cyclic hardening had the same effect on ε̇c and ε̇p. Selecting c = 0.32 (i.e., θc ≈ θp/3) was
found to be appropriate for simulating the stress relaxation. It was thus shown that ε̇c was
much less affected by cyclic hardening than ε̇p, leading to suggestion that inelastic deformation
mechanisms different from viscoplasticity started to operate shortly after the onset of strain
holding, as discussed in Section 2.

Fig. 10. Effect of the cyclic hardening parameter c on (a) variations in σ+peak and σrelax with N and
(b) stress relaxation at N = 20 under creep-fatigue loading at ε̇ = 10−3 s−1 with th = 60min at

∆ε = 0.01

Figure 11 illustrates the effects of th on σ+peak and σrelax measured in the creep-fatigue tests
at ε̇ = 10−3 s−1 with th = 10min and 60min at ∆ε = 0.01. In Fig. 11a, σ+peak for th = 0 is shown
for reference. In the two tests with th = 10 and 60min, the effect of th on σ+peak appeared slightly
after the near-saturation of cyclic hardening, whereas the effect on σrelax became rather large
with increasing N before the near-saturation of cyclic hardening. These experimental features
were well reproduced by the constitutive model. The creep-fatigue tests at ∆ε = 0.007 with
th = 10 and 60min were also simulated accurately, though not shown here to save the space.

Fig. 11. Effect of the strain hold time th on (a) variations in σ+peak and σrelax with N and (b) stress
relaxation at N = 1 and 20 under creep-fatigue loading at ε̇ = 10−3 s−1 at ∆ε = 0.01
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The slight effect of th on σ+peak described above was successfully simulated because of the
thermal recovery of cyclic hardening represented by the second term on the right-hand side of
Eq. (3.7). Here, it is noted that the thermal recovery exponent ω in Eq. (3.7) is large (Table 4);
as a result, the thermal recovery of cyclic hardening occurred non-linearly to yield the slight
effect of th on σ+peak despite the factor of six difference in th in the two tests with th = 10 and
60min. However, the comparatively large effect of th on σrelax was well simulated owing to ε̇

c

expressed as Eq. (3.2)2, as depicted in Fig. 11b. Because σrelax denotes the stress attained at the
end of stress relaxation, it is seen from Fig. 11b that the difference in σrelax in the two tests was
caused by the stress relaxation during 10 ¬ t∗ ¬ 60min in the test with th = 60min; the stress
relaxation from t∗ = 10min to t∗ = 60min was about 10MPa and 25MPa at N = 1 and 20,
respectively. The stress relaxation during 10 ¬ t∗ ¬ 60min was in the Norton stage. Therefore,
the difference in σrelax in the two tests was well simulated because of the Norton type of creep
equation expressed as Eq. (3.2)2 for ε̇

c.

The stress relaxation under strain holding became larger with the development of cyclic
hardening or with the increase in the strain hold time, as shown in this Section. Goodall et al.
(1981) observed this feature in creep-fatigue tests of 316 stainless steel at 600◦C, and Nouailhas
(1989) simulated the tests using a unified model of cyclic viscoplasticity. However, Goodall et al.
(1981) and Nouailhas (1989) did not notice the transient and Norton stages in stress relaxation,
which were studied in this work; moreover, Nouailhas (1989) did not show stress relaxation
curves under strain holding.

6. Concluding remarks

In this work, the cyclic hardening and stress relaxation behavior of SUS316HTP was experi-
mentally and numerically studied under cyclic loading with tensile strain holding at 700◦C.
Creep-fatigue tests were performed to show that the slow stress-relaxation stage satisfying Nor-
ton’s law followed the transient stress-relaxation stage under strain holding. The Norton stage
was much less affected by cyclic hardening than the transient stage. Since the transient stage
was rate-controlled by viscoplasticity in the presence of the increase in dislocation density in
grains to cause cyclic hardening, it was suggested that inelastic deformation mechanisms, such
as diffusion creep and grain boundary sliding, operated in the Norton stage.

A cyclic viscoplastic-creep model was developed based on the experimental results described
above. In this model, the inelastic strain-rate ε̇in was decomposed into viscoplastic and creep
strain-rates, which were dominant in the transient and Norton stages in stress relaxation, re-
spectively. The viscoplastic strain-rate ε̇p was expressed by incorporating the noticeable effect
of cyclic hardening on the drag and back stresses, while the creep strain-rate ε̇c was ruled by
Norton’s law and was assumed to be weakly affected by cyclic hardening. The material parame-
ters in the constitutive model were determined to verify the decomposition of ε̇in into ε̇p and ε̇c,
which were affected differently by cyclic hardening.

Finally, the cyclic viscoplastic-creep model was used to simulate the creep-fatigue tests per-
formed in the present study. The constitutive model successfully simulated the stress relaxation
behavior in the presence of cyclic hardening, and the stress relaxation in the simulation became
more significant as cyclic hardening developed, as observed in the creep-fatigue tests. This was
owing to the dominance of ε̇p and ε̇c in the transient and Norton stages, respectively, resulting
in the transient stage being much more affected by cyclic hardening than the Norton stage.
The stress-relaxation curves were also accurately simulated, and the effect of th on the stress
relaxation was attributed to ε̇c in the Norton stage.
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Appendix A. Change in tensile peak stress

Let us consider rapid, uniaxial cyclic loading with th = 0 to ignore ε̇
c. On the tension side, Eqs.

(3.2)1, (3.4)1 and (3.6) give the following equation in the viscoplastic region, where ε̇
p ≃ ε̇

σ ≃ (1 + φκ)
[
σp0

( ε̇
ε̇p0

)1/m
+ α̃
]

(A.1)

where α̃ indicates the uniaxial component of the cyclic-hardening-free back stress. Because cyclic
hardening is negligibly small under the initial loading to the first tensile peak, Eq. (A.1) allows
the initial tensile peak stress σini+peak to be expressed as

σini+peak ≃ σ
p
0

( ε̇
ε̇p0

)1/m
+ α̃ini+peak (A.2)

where α̃ini+peak denotes the initial peak value of α̃. Here, let us assume that the tensile peak value

α̃+peak does not change from α̃
ini
+peak with the increasing N because α̃ is regarded as the back

stress in the absence of cyclic hardening. Eqs. (A.1) and (A.2) thus provide

σ+peak ≃ (1 + φκ)σ
ini
+peak (A.3)

When the thermal recovery of cyclic hardening is negligible under rapid cyclic loading, Eq. (3.7)
is integrated to give

κ = κ0[1− exp(−Lp)] (A.4)

Hence, Eq. (A.3) leads to Eqs. (4.1).

Appendix B. Determination of thermal recovery parameters

Let us consider rapid, uniaxial cyclic loading with th 6= 0 to determine the thermal recovery
parameters R and ω in Eq. (3.7). Let us suppose that κ decreases from κ+peak to κrelax under
tensile strain holding, and that κ increases from κrelax to κ+peak under rapid cyclic loading in
one cycle. Here, we assume that the second and first terms on the right-hand side in Eq. (3.7)
are active under tensile strain holding and rapid cyclic loading, respectively, to provide

κrelax = [κ
1−ω
+peak +R(ω − 1)th]

1/(1−ω)

κ+peak = κrelax + (κ0 − κrelax )[1 − exp(−Lp
∗)]

(B.1)

where p∗ denotes the change in p due to rapid cyclic loading in one cycle

p∗ = 2
(
∆ε−

σrelax + |σ−peak |

E

)
(B.2)

To determine R and ω using Eqs. (B.1), the tensile peak stresses at N = 30 in the creep-
-fatigue tests at ε̇ = 10−3 s−1 with th = 10min and 60min at ∆ε = 0.01 are used to evaluate
κ+peak10 and κ+peak60 using Eq. (A.3) as

κ+peak10 =
1

φ

(σ+peak10
σini+peak

− 1
)

κ+peak60 =
1

φ

(σ+peak60
σini+peak

− 1
)

(B.3)

where the subscripts 10 and 60 indicate th = 10min and 60min. Then, κrelax10 and κrelax60 are
calculated using Eq. (B.1)2. Here, it is noted that φ, κ0, and L are determined in Step 2 in
Section 4. Finally, R and ω are evaluated by numerically solving the following equations derived
from Eq. (B.1)1

κ1−ωrelax10 − κ
1−ω
+peak10 = R(ω − 1)th10 th10 = 600 s

κ1−ωrelax60 − κ
1−ω
+peak60 = R(ω − 1)th60 th60 = 3600 s

(B.4)
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Appendix C. Cyclic hardening parameter for creep strain-rate

To evaluate c in Eq. (3.9), we consider the changes in σ+peak and σ10E−7 with N in the creep-
-fatigue test at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.01. For σ+peak in this creep-fatigue
test, Eq. (A.3) is valid, though κ is affected by th 6= 0. For σ10E−7, Eqs. (3.2)2, (3.6) and (3.9)
provide

σ10E−7 = (1 + cφκ)σ
ini
10E−7 σini10E−7 = σ

c
0

( ε̇c

ε̇c0

)1/n
(C.1)

where ε̇c = 10−7 s−1. The change in κ is considered small under strain holding when ω is large
in Eq. (3.7). Thus, using Eqs. (A.3) and (C.1)1, c is estimated as

c ≃
σ10E−7/σ

ini
10E−7 − 1

σ+peak/σ
ini
+peak − 1

(C.2)
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